Aller au contenu

Messages recommandés

Posté

Bonjour,

 

J'aurais une question en ce mardi ensoleillé, sachant que la Lune ralentit (sa révolution), pourquoi les calculs ne prédissent pas une chute de l'astre sur Terre ?

On me répond souvent que la Lune doit respecter les lois de Kepler pour rester en orbite, mais ma réponse est : justement, qu'est-ce qu'elle s'en fout de rester en orbite, elle devrait tomber !

 

Finalement ma question est : par quel phénomène la Lune s'éloigne-t-elle de la Terre ?

Allez-y doucement sur les explications de mécanique classique, je ne suis pas un as.

 

Merci :)

Posté

Si la révolution ralentit, c'est que forcément la Lune s'éloigne.

 

Ensuite, tu as l'air de dire que si la Lune souhaite rester en orbite, elle devra suivre les lois de Kepler (ce qui justifie ta question « qu'est-ce qu'elle s'en fout de rester en orbite »). Non, ce n'est pas ça, c'est : la Lune s'éloigne de la Terre donc, en vertu des lois de Kepler, forcément elle tourne moins vite. Elle n'y peut rien, les lois de Kepler n'admettent pas d'exception... :)

 

Reste ensuite à expliquer pourquoi la Lune s'éloigne de la Terre, mais je ne suis pas un as non plus (je sais que c'est une question de marées...)

Posté
la Lune s'éloigne de la Terre donc, en vertu des lois de Kepler, forcément elle tourne moins vite.

 

Dites-moi si je me trompes mais: le quiproquo de Kelthuzad vient du fait que c'est la vitesse propre et non la période de rotation qui joue ?

Je veux dire que si on est "laché" à une vitesse nulle dans le champ gravitationnel d'une planète ou d'une étoile, on s'écrasera dessus; par contre si on a une vitesse X on restera en orbite autour, et forcément, plus on en sera loin, plus on mettra de temps à effectuer une révolution ?

Posté (modifié)
Si la révolution ralentit' date=' c'est que forcément la Lune s'éloigne.[/quote']

 

Ben justement cette formulation me gène, la révolution qui ralentit ne nous dit pas si elle tombera sur Terre ou si elle s'éloignera pour rester en orbite, de façon intuitive je trouve difficile de faire cause / conséquence ici.

 

Ensuite' date=' tu as l'air de dire que si la Lune souhaite rester en orbite, elle devra suivre les lois de Kepler (ce qui justifie ta question « qu'est-ce qu'elle s'en fout de rester en orbite »). Non, ce n'est pas ça, c'est : la Lune s'éloigne de la Terre donc, en vertu des lois de Kepler, forcément elle tourne moins vite. Elle n'y peut rien, les lois de Kepler n'admettent pas d'exception... :)[/quote']

 

Dans ce sens, je le sens déjà mieux.

 

Reste ensuite à expliquer pourquoi la Lune s'éloigne de la Terre' date=' mais je ne suis pas un as non plus (je sais que c'est une question de marées...)[/quote']

 

Du coup oui ça devient ma question, merci Bruno.

 

Dites-moi si je me trompes mais: le quiproquo de Kelthuzad vient du fait que c'est la vitesse propre et non la période de rotation qui joue ?

Je veux dire que si on est "laché" à une vitesse nulle dans le champ gravitationnel d'une planète ou d'une étoile' date=' on s'écrasera dessus; par contre si on a une vitesse X on restera en orbite autour, et forcément, plus on en sera loin, plus on mettra de temps à effectuer une révolution ?[/quote']

 

Je n'ai pas parlé de rotation mais bien de vitesse de révolution, je prends peut-être le problème à l'envers mais d'un point de vue intuitif si on prend un astre comme la Lune en orbite respectant les lois de Kepler, si on ralentit la vitesse révolution les lois de Kepler ne seront plus satisfaites et l'astre s'écrasera sur son attracteur.

 

A moins que je fasse erreur mais ce raisonnement me parait logique et plein de sens. Je dois oublier une information crucial sur l'éloignement de la Lune.

En fait une question simple pourrait surement répondre à mon interrogation, ça serait simplement : pourquoi la Lune s'éloigne de la Terre.

Modifié par Kelthuzad
Posté

Pour moi, le quiproquo s'exprime dans cette phrase :

On me répond souvent que la Lune doit respecter les lois de Kepler pour rester en orbite, mais ma réponse est : justement, qu'est-ce qu'elle s'en fout de rester en orbite, elle devrait tomber !

Si on veut que la Lune reste en orbite, il faudrait qu'elle suive les lois de Kepler. Oui, mais pourquoi elle resterait en orbite ? Ça se trouve, non, du coup elle n'a plus à suivre les lois de Kepler et va tomber.

 

La vérité, c'est que la Lune reste forcément en orbite, elle n'a pas le choix. De plus, comme elle s'éloigne (ce qu'il faut expliquer - je n'ai pas lu le lien de Jarnicoton), sa période de révolution va diminuer.

Posté
La vérité, c'est que la Lune reste forcément en orbite, elle n'a pas le choix.

 

Voila c'est ce que je disais, pour moi ça n'a aucun sens de le formuler ainsi. Pour le reste du raisonnement je suis d'accord mais du coup je bloque ici.

Posté (modifié)

Les marées dissipent de l'énergie = la Terre tourne moins vite.

La Terre tourne moins vite = le moment cinétique du système Terre-Lune diminue.

Mais comme c'est un "système isolé" (qui ne subit pas d'influence extérieure... enfin on l'admet), son moment cinétique n'a pas le droit de diminuer. Il faut compenser.

Puisque la Terre tourne moins vite et que ça ne fait pas tourner la lune plus vite, elle compense en s'éloignant.

Il faut se pencher sur la physique du moment cinétique pour le comprendre. Disons que le moment cinétique est l'extension aux mouvements de rotation de la notion de quantité de mouvement, elle aussi un invariant dans un système isolé.

 

Si tu es déçu par ma réponse qui ne fait pas appel à des éléments très simples et intuitifs, c'est que (se limitant à mes capacités de réponse) la question n'avait pas de réponse très simple et intuitive.

Modifié par jarnicoton
Posté

Kelthuzad : qu'est-ce qui te bloque dans le fait que la Lune va forcément rester en orbite lorsqu'elle s'éloigne un petit peu ?

 

Pour ne pas rester en orbite, il faudrait qu'elle échappe à la gravitation terrestre, donc qu'elle allume ses réacteurs pour atteindre 11.000 km/h (je crois que la vitesse de libération est de cet ordre).

 

Et pour qu'elle tombe sur la Terre, il faudrait qu'elle reste en orbite, mais selon une orbite qui la rapproche peu à peu. Or les marées l'éloignent, elles ne la rapprochent pas. (Et j'aime bien l'explication de Jarnicoton sur ce point.)

Posté

Ce qui me bloque c'est les "n'a pas le droit" ou "n'a pas le choix".

Si on prend un astre ayant une trajectoire elliptique et respectant la loi des aires, cet astre sera en orbite. Si on diminue seule la période de révolution, l'astre s'écrasera sur son attracteur.

Pour Terre-Lune il y a donc un phénomène qui empêche cela.

 

Pour ne pas rester en orbite, il est suffisant d'aller un peu trop doucement ou un peu trop vite pour s'écraser ou partir dans l'espace, pas besoin d'atteindre la vitesse de libération, d'autant plus que la gravité est plus faible en altitude.

 

Donc on est au moins d'accord sur un point, tout est dans les marées.

Posté

Sur son orbite à peu près circulaire (vraiment à peu près) la vitesse de la lune est proche du kilomètre à la seconde. Il lui faudrait pour se libérer un supplément de 400 m/s (on multiplie par racine de 2, soit environ 5000 km/h.

Posté

Pour ne pas rester en orbite, il est suffisant d'aller un peu trop doucement ou un peu trop vite pour s'écraser ou partir dans l'espace, pas besoin d'atteindre la vitesse de libération, d'autant plus que la gravité est plus faible en altitude.

 

Là, c'est grave :b: Il faut revoir toute ta mécanique céleste élémentaire avant de poser des questions. ;)

Posté

Non, non, je ne sais pas par où prendre tout cela et je ne veux pas faire un cours entier. Note au demeurant qu'un satellite en orbite circulaire qu'on ralentit ne tombe pas nécessairement sur la planète. Il prend une orbite elliptique dont l'apogée reste l'altitude de l'orbite circulaire initiale, tandis que son périgée passe plus bas. Tant que ce plus bas n'est pas le niveau du sol de la planète, il n'y a pas d'écrasement.

Il te faut faire un travail de recherche personnel.

Posté
Il prend une orbite elliptique dont l'apogée reste l'altitude de l'orbite circulaire initiale, tandis que son périgée passe plus bas.

 

Je l'imagine bien et ça parait intuitif merci.

 

Il te faut faire un travail de recherche personnel.

 

C'est le cas. Après, tout se trouve et peut se comprendre par recherches personnelles, l'intérêt du forum est justement de voir si on est sur la bonne voie.

Posté

D'après ce qui est expliqué ici :

http://philippe.boeuf.pagesperso-orange.fr/robert/astronomie/lune.htm

Le bourrelet accélère la Lune, son inertie étant plus grande elle s'éloigne de la Terre, cela parait parfaitement logique.

De plus si la Lune était en dessous de l'orbite géostationnaire, les effets de marées seraient apparemment différents et la Lune s'écraserait sur Terre.

 

Bon encore quelques détails à peaufiner mais ça commence à s'éclaircir.

Posté

La Lune tourne autours de la Terre parce que Dieu en a décidé ainsi. Il a aussi voulu qu'elle provoque des marées sur les mers et océans ce qui la pousse lentement à s'éloigner rien que pour enquiquiner Kelthuzad.

 

:lol:

 

:jesors:

Posté (modifié)
Si on prend un astre ayant une trajectoire elliptique et respectant la loi des aires, cet astre sera en orbite. Si on diminue seule la période de révolution, l'astre s'écrasera sur son attracteur.

Je crois que je comprends ce qui cloche... Apparemment tu penses que :

 

- La Lune tourne autour de la Terre à une certaine vitesse, elle est située à une certaine distance, le tout en confirmité avec Kepler.

- À cause des effets de marée, la Lune s'éloigne. Du coup, elle n'est plus en conformité avec Kepler. Pour l'être, il faudrait que sa période de révolution diminue, donc il faudrait imaginer un phénomène supplémentaire qui diminue sa période de révolution et qui permette ainsi à la Lune de se remettre en confirmité avec Kepler.

- Sans ce phénomène particulier, la Lune n'est pas en conformité avec Kepler, donc elle ne peut plus être en orbite autour de la Terre. Conséquence : elle va s'écraser. Comme elle ne s'écrase pas, tu demandes pourquoi (quel est ce phénomène supplémentaire ?)

 

Si c'est ça que tu as en tête, il y a deux erreurs fondamentales :

- Si la Lune cessait d'être en orbite autour de la Terre, elle ne s'écraserait pas, elle s'enfuierait.

- La loi de Kepler n'est pas une loi qu'il faut suivre si on souhaite être en orbite, c'est une loi que tout le monde suit sans exception. Aussi, lorsque la Lune s'éloigne, forcément, obligatoirement, nécessairement, sa période de révolution diminue. Non pas afin qu'elle reste en orbite, mais parce que c'est la loi de la Nature, c'est comme ça. De même que lorsqu'on lâche un objet, il tombe. Il ne le fait pas pour se mettre en confirmité avec Newton, il le fait - point barre.

Modifié par 'Bruno
Posté
Je crois que je comprends ce qui cloche... Apparemment tu penses que :

 

- La Lune tourne autour de la Terre à une certaine vitesse' date=' elle est située à une certaine distance, le tout en confirmité avec Kepler.

- À cause des effets de marée, la Lune s'éloigne. Du coup, elle n'est plus en conformité avec Kepler. Pour l'être, il faudrait que sa période de révolution diminue, donc il faudrait imaginer un phénomène supplémentaire qui diminue sa période de révolution et qui permette ainsi à la Lune de se remettre en confirmité avec Kepler.

- Sans ce phénomène particulier, la Lune n'est pas en conformité avec Kepler, donc elle ne peut plus être en orbite autour de la Terre. Conséquence : elle va s'écraser. Comme elle ne s'écrase pas, tu demandes pourquoi (quel est ce phénomène supplémentaire ?)

 

Si c'est ça que tu as en tête, il y a deux erreurs fondamentales :

- Si la Lune cessait d'être en orbite autour de la Terre, elle ne s'écraserait pas, elle s'enfuierait.

- La loi de Kepler n'est pas une loi qu'il faut suivre si on souhaite être en orbite, c'est une loi que tout le monde suit sans exception. Aussi, lorsque la Lune s'éloigne, forcément, obligatoirement, nécessairement, sa période de révolution diminue. Non pas afin qu'elle reste en orbite, mais parce que c'est la loi de la Nature, c'est comme ça. De même que lorsqu'on lâche un objet, il tombe. Il ne le fait pas pour se mettre en confirmité avec Newton, il le fait - point barre.[/quote']

 

Merci d'essayer de rentrer dans ma tête pour essayer de m'éclairer. ^^

 

Le premier tiret, oui.

Le deuxième tiret je ne pense pas ça, pour l'instant j'ai en tête que les effets de marées ralentissent la vitesse de rotation de la Terre, influant donc une diminution de la vitesse de révolution de la Lune.

Troisième tiret du coup oui et non mais bon tu vois où j'en suis.

 

Le premier tiret de ton explication, je ne suis pas d'accord, si une orbite n'est plus stable, à mon sens on ne peut pas savoir si l'objet va tomber ou partir dans l'espace. Par exemple dans mon lien plus haut, il est expliqué que Phobos satellite de Mars va finir par s'écraser au sol dû à la faible distance Mars-Phobos. Je considère que tu parles d'un satellite en général et pas de la Lune car on a un "si elle quittait l'orbite".

Pour le deuxième tiret de ton explication, je suis en parti d'accord, cependant je pense que tous les phénomène dû aux lois surtout pour un cas "simplet" ici est compréhensible intuitivement. La pomme qui tombe est parfaitement intuitif, l'éloignement de la Lune l'est aussi (le sera pour moi une fois que j'aurai compris)

 

Je te lirai demain gglagreg, merci à tous pour vos efforts, bonne nuit.

Posté

Phobos va s'écraser sur Mars tout en continuant à orbiter autour de lui (et en s'approchant peu à peu). Phobos ne cessera donc pas d'être en orbite.

Posté

Le premier tiret de ton explication, je ne suis pas d'accord, si une orbite n'est plus stable, à mon sens on ne peut pas savoir si l'objet va tomber ou partir dans l'espace.

 

Qu'entends-tu par orbite qui n'est pas stable ?

 

Voltaire a écrit un livre de physique (oui ! Voltaire personnellement, sans sa marquise) assez quelconque et portant de belles erreurs ; j'en ai trouvé un exemplaire chez un bouquiniste, réédité en 1820. Voltaire y met quelques lettres qu'il reçoit et les réponses qu'il fait. En gros, des amateurs inspirés un peu poètes en sciences lui écrivent pour lui faire part de théories physiques personnelles ; il répond au nom de ce qui est déjà connu avec sûreté, les adjurant d'étudier avant de supposer. Veux-tu nous faire tenir le rôle de Voltaire ?

Posté

Tu as raison Kelthuzad, faut revenir à des explications plus compréhensibles ;) :

La lune exerce une attraction sur la terre : ça se traduit par deux bourrelets dans l'axe de la lune (ce qui se manifeste par les marées). Tout irait bien si la terre présentait toujours la même face à la lune, mais la terre tourne sur elle-même plus vite que la lune ne tourne autour de la terre.

 

Ce mouvement de rotation de la terre sur elle-même entraîne, par frottement, ces bourrelets en avance par rapport à l'axe terre-lune.

 

Ces bourrelets qui ne sont plus en position de "repos" tirent la lune sur son orbite (ils sont "en avance"). La lune est donc progressivement poussée sur une orbite plus éloignée comme l'est un satellite dont on "monte" l'orbite avec ses propulseurs.

 

Dans le même temps, la rotation de la terre est freinée par le frottement des bourrelets de marée sur sa surface, sa rotation ralentit.

 

Cet effet subsiste jusqu'à ce que les deux corps en orbite présentent l'un à l'autre toujours la même face ce qui est déjà le cas de la Lune, pas encore celui de la terre.

Posté (modifié)
Kelthuzad : qu'est-ce qui te bloque dans le fait que la Lune va forcément rester en orbite lorsqu'elle s'éloigne un petit peu ?

 

Pour ne pas rester en orbite' date=' il faudrait qu'elle échappe à la gravitation terrestre, donc qu'elle allume ses réacteurs pour atteindre 11.000 km/h (je crois que la vitesse de libération est de cet ordre).

 

Et pour qu'elle tombe sur la Terre, il faudrait qu'elle reste en orbite, mais selon une orbite qui la rapproche peu à peu. Or les marées l'éloignent, elles ne la rapprochent pas. (Et j'aime bien l'explication de Jarnicoton sur ce point.)[/quote']

 

11'000km/h c'est la vitesse de libération à l'équateur pour les fusées nan ?

 

Pour la lune c'est moins je crois. Enfin il me semble, dites moi si je me trompe.

 

J'ai vu un reportage il y a de ça quelques jours qui parlait de la fin du monde, il expliquait super bien l'histoire de la Lune qui s'éloignait et qui finirait par destabiliser les pôles. Sinon j'ai trouvé ça : http://www.windows2universe.org/kids_space/moon_orbit.html

Modifié par Mike-ruhi
Posté (modifié)

Eh bien !

 

Peut-on envisager de faire d'un forum spécialisé un abécédaire de sa discipline, un truc complètement ab initio ? En principe, non...

Modifié par jarnicoton
Posté (modifié)
11'000km/h c'est la vitesse de libération à l'équateur pour les fusées nan ?

 

Pour la lune c'est moins je crois. Enfin il me semble, dites moi si je me trompe.

 

J'ai vu un reportage il y a de ça quelques jours qui parlait de la fin du monde, il expliquait super bien l'histoire de la Lune qui s'éloignait et qui finirait par destabiliser les pôles. Sinon j'ai trouvé ça : http://www.windows2universe.org/kids_space/moon_orbit.html

 

A la surface c'est 11,1 km/s soit 40 000 km/h, du coup le 11 000 km/h à l'air correct.

Pour la Lune c'est 2,4 km/s soit 8 000 km/h.

 

L'inversion des pôles s'est déjà produite, il pôle sud magnétique, situé au nord du Canada, est actuellement entrain de descendre, la boussole là-bas ne sera plus fiable ^^

 

Au fait de quoi est constitué ce bourrelet ?

Modifié par Kelthuzad
Posté

La valeur de vitesse de libération que je donnais n'a pas d'importanceétaient sans intérêt, ce qui compte est d'expliquer qu'il faudrait que la Lune accélère un bon coup pour quitter son orbite (ce qui est impossible).

Rejoignez la conversation !

Vous pouvez répondre maintenant et vous inscrire plus tard. Si vous avez un compte, connectez-vous pour poster avec votre compte.

Invité
Répondre à ce sujet…

×   Collé en tant que texte enrichi.   Coller en tant que texte brut à la place

  Seulement 75 émoticônes maximum sont autorisées.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédent a été rétabli.   Vider l’éditeur

×   Vous ne pouvez pas directement coller des images. Envoyez-les depuis votre ordinateur ou insérez-les depuis une URL.

  • En ligne récemment   0 membre est en ligne

    • Aucun utilisateur enregistré regarde cette page.
×
×
  • Créer...

Information importante

Nous avons placé des cookies sur votre appareil pour aider à améliorer ce site. Vous pouvez choisir d’ajuster vos paramètres de cookie, sinon nous supposerons que vous êtes d’accord pour continuer.